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Questions of Phenomenology

[LEP electroweak WG]

● So far, precision measurements are consistent with a 
standard model electroweak sector described, at least 
effectively, by a scalar Higgs field < 200 GeV

● Higgs field gives an economical, if not particularly 
insightful, description of fermion masses

Question 1: Does a Higgs boson exist ? 



● So far (neglecting gravity) all observed particles 
follow the pattern of spin-1/2 fermions interacting by 
exchange of spin-1 gauge fields

● SU(2)xU(1) is broken in the standard model without 
a Higgs field, by the strong interaction
( But mW is O(1 GeV), not O(100 GeV) )

Question 2: Is electroweak symmetry broken by 
fermion condensation ?



the above motivations, and 

● Composite particles, like pions, kaons, eta, can be 
naturally light compared to the scale of other new 
physics

● If not the most “exciting” scenario, at least not 
preposterous.  Not ruled out, and an obvious 
benchmark at the LHC (versus SUSY, extra 
dimensions, ...)

Question 1+2: Is there a composite Higgs boson ?



 “extended supercolor” 

“supercolor” scale

weak scale

>100 TeV ? 

10 TeV ? 

0.1 TeV 

Can start at the top, and work down:

Or start at the bottom and work up:
simply ask:  “suppose we see some NGB’s - then what?”

How can a large 
separation be 
explained ?



Questions of Theory

Logically distinct from, but (deeply) related to:  

● Question 2:  What is the low energy description of a 
theory of strongly coupled fermions ?  

● Question 1:  What is the most general four-
dimensional effective Lagrangian describing  
Nambu-Goldstone bosons (NGBs) of a 
broken symmetry ? 



Outline

• A simple WZ term for a simple little Higgs 
model

• Anomalies and Wess-Zumino-Witten terms

• Some implications for Little Higgs theories



A simple model

● Fermion theories have SU(nf) symmetry (although 

we don’t have to talk about fermions)

Symmetry breaking G → H 

● Need at least SU(2) electroweak unbroken

⇒ Consider SU(3)→SU(2)

G=SU(3), H=SU(2)

Why?



● λ2 λ5 λ7 : 

Which SU(2) is unbroken?

Five broken generators don’t arrange into 
doublet + singlet

● λ1 λ2 λ3 : 
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NGB’s: a doublet and a singlet



Effective actions for NGBs

|0〉Start with a given vacuum state: 

Act on vacuum with general G group element: |0′〉 = g|0〉

If all generators are broken: M = {g|0〉, g ∈ G} ↔ G

! Reminder: the vacuum of the theory is the configuration that minReminder: the vacuum of the theory is the configuration that minimizes imizes 

the energythe energy

! We cannot force a field to acquire a non-zero vev, it has to come from 

the minimization of the potential:

! ! has to be positive in order to bound from below the potential energy.

If         we have one miminum at

If         we have a family of minima at

Spontaneous Symmetry Breaking (SSB)Spontaneous Symmetry Breaking (SSB)

If generators of a subgroup H not broken: gh|0〉 = g|0〉

M ↔ G/H = {[g], g ∈ G} , [g] = {gh, h ∈ H}

SU(3)/SU(2) ↔ S5

SU(3) × SU(3) × U(1)/SU(3) × U(1) ↔ SU(3)Examples:

(≈ chiral Lagrangians, but haven’t said anything about fermions)

Field space M = modes along flat directions of 
degenerate vacua 



Our field space for SU(3)/SU(2) is the five-sphere

Φ =




φ1 + iφ2

φ3 + iφ4

φ5 + iφ6


 Φ†Φ =

6∑

i=1

(φi)2 = 1

Local choice of coordinates:

A =

(
W ·

· ·

)

Φ = exp


i




η ·

· η
H

H†
−2η










·

·

1




Identify unbroken group with electroweak

H → eiεW H , η → η

What is the most general action for the dynamics of  W, H, η ?



Must be electroweak gauge-invariant:

But further constraints from symmetry - everything 
must be written in terms of Φ

(Fµν
W )2 , |DµH|2 , (∂µη)2 , ∂µηH†DµH , εµνρσηFµνFρσ , . . .

Γ(Φ) =

∫
d
4
x |∂µΦ|2 + c1|∂µΦ|4 + c2Φ

†
∂

4Φ + . . .

Done ?  No.. 

Γ′(Φ) = number × “area bounded by the image of spacetime on S5”

Together, Γ and Γ′ give the general effective action for Φ



spacetime field manifold (S5)

x →
Φ(x)

Nothing subtle, just another way of building a local,  
four-dimensional, SU(3)-invariant action.



spacetime field manifold (S5)

→

Nothing subtle, just another way of building a local,  
four-dimensional, SU(3)-invariant action.

Explicitly, 

Γ′(Φ) ∝

∫
M5

−

i

8
Φ†

dΦdΦ†
dΦdΦ†

dΦ

M5

1
√

1 − (φ1)2 − · · ·− (φ5)2
εABCDE ∂φ1

∂yA

∂φ2

∂yB

∂φ3

∂yC

∂φ4

∂yD

∂φ5

∂yE
d5y



Quantization:

Can only be consistent if difference between choices 
of bounding surface is 2π x integer

[Volume of S5] = π3 ⇒

Γ′(Φ) = integer × 2π ×
1

π3

∫
M5

−
i

8
Φ†

dΦdΦ†
dΦdΦ†

dΦ

[Witten 1982]



(quantized) odd parity interactions of NGBs:

Γ′(Φ) ∝

∫
d4x εµνρση∂µH†∂νH∂ρH

†∂σH + . . .

Γ′ is odd under: !x → −!x

η → +η

H → +H

(Γ is even) 

Such five-boson interactions difficult to observe 
directly (even in QCD).   Easier to see this physics 
when gauge fields are coupled to the system.



Mathematical jargon

For a given smooth Φ(x), there exists a bounding 
surface: π4(S

5)=0 

Most perverse we can be about choosing different 
bounding surfaces is to wrap around the sphere: 
π5(S

5)=Z 

These are obvious for the present case.   For 
SU(n)xSU(n)→SU(n), also π4(SU(n))=0, π5(SU(n))=Z.

SU(n)xSU(n)/SU(n)=SU(n) SU(3)/SU(2)= S5

algebra trivial, 
topology complicated

topology trivial, 
algebra complicated 



Gauging

Recall gauge invariance of kinetic term 

L0 = ∂µφ†∂µφ

δL0 = −iφ†∂µε∂µφ + i∂µφ†∂µεφ

L1 = iφ†Aµ∂µφ − i∂µφ†Aµφ

δ(L0 + L1) = −φ†Aµ∂µεφ − φ†∂µεAµφ

L2 = φ†AµAµφ

δ(L0 + L1 + L2) = 0

L = (∂µφ† + iφ†Aµ)(∂µφ − iAµφ)



Play the same game with the topological term

Γ0 =
−ip

4π2

∫
M5

Φ†dΦ(dΦ†dΦ)2

Doesn’t look four-dimensional !

Doesn’t look globally invariant !
Φ†

λ
AΦ(dΦ†

dΦ)2 + 2d(Φ†
λ

AΦ)Φ†
dΦdΦ†

dΦ = −2dΦ†
λ

A
dΦdΦ†

dΦ

δΓ0 =
p

4π2

∫
M4

(
Φ†dεdΦ + dΦ†dεΦ

)
dΦ†dΦ

Γ1 =
p

4π2

∫
M4

(
−Φ†AdΦ − dΦ†AΦ

)
dΦ†dΦ

+c1Φ
†dΦ(Φ†dAdΦ − dΦ†dAΦ) + c2dΦ†dΦΦ†dAΦ

δΓ0 =
p

4π2

∫
M5

d
[
Φ†εΦ(dΦ†dΦ)2 + 2εAd(Φ†λAΦ)Φ†dΦdΦ†dΦ

]
−3εAd(Φ†λAΦ)(dΦ†dΦ)2

d(Φ†
λ

AΦ)(dΦ†
dΦ)2 = 0

δΓ0 =
p

4π2

∫
M4

[
Φ†εΦ(dΦ†dΦ)2 + 2εAd(Φ†λAΦ)Φ†dΦdΦ†dΦ

]



Who ordered the fermions ? 

After adding 1,2,3,4 gauge fields, the action arranges 
into a set of (unquantized) gauge invariant operators, 
plus a (quantized) action with anomalous gauge 
variation: 

δΓWZW = −

2p

24π2

∫
M4

Tr

{(
ε −

ε0
2

) [(
dA −

1

2
dA0

)2

−

i

2
d

(
A −

1

2
A0

)3
]}

+
27

8
ε0(dA0)

2

δΓ = −

Nc

24π2

∫
M4

Tr

{
εL

[
(dAL)2 −

i

2
d(A3

L)

]}
− (L ↔ R)

Recall the fermion anomaly:



Constraints on the UV completion:

Anomaly interactions:

● anomaly for triplet in N, singlet in N-bar of SU(N)

● Nc=2p is even

Φ ∼ ΨLq̄R =




ψ1

ψ2

ψ3


 q̄

−N

8π2
√

3

∫
d4x εµνρσηTr(Fµν

W F ρσ
W ) + . . .



Some heavy machinery for these identities:

d(Φ†
λ

AΦ)(dΦ†
dΦ)2 = 0

La = iad + dia

Lie derivative exterior derivative

δΓ =

∫
δω = i

∫
dεa iaω = i

∫
d(εa iaω) − εa diaω︸︷︷︸

Laω
︸︷︷︸

0

−ia dω
︸︷︷︸

0

inner derivative

ω globally invariant ω closed

δΓ0 =
p

4π2

∫
M5

d
[
Φ†εΦ(dΦ†dΦ)2 + 2d(Φ†εΦ)Φ†dΦdΦ†dΦ

]
−3εAd(Φ†λAΦ)(dΦ†dΦ)2

⇒Makes action manifestly four-dimensional (as it has to be)

δΦ = iεΦ



δΓ = i

∫
M4

εa iaω︸︷︷︸
dθa

= −i

∫
M4

dεaθa

diaω = Laω − iadω = 0

⇒Makes variation manifestly local (as it has to be)

● Using these methods, can show that it is always 
possible to keep adding gauge fields until the total 
gauge variation of the action is independent of 
meson fields

● By definition, this is a “consistent” anomaly

δεΓ(π, A) ∼

∫
f(ε, A)

[e.g. Hull and Spence 1991]



An easy but important theorem: 
(fermions without fermions)

Consider the NGBs from a spontaneously broken 
continuous symmetry.   
If it is possible to write a topological action, then the 
symmetry breaking has a chiral fermion interpretation.

● in mathematical terms: need a closed, globally-
invariant five-form

● example:  SU(3)→SU(2) (a five-form on a five 
manifold is closed)

● example:  any theory with a parity defined on the 
symmetry generators



Parity
Many patterns of symmetry breaking define 
a parity: 

[V, V]~V, [V,A]~A, [A,A]~V V→+V 
A→-A unbroken “vector” generators

broken “axial” generatorsExamples:
● SU(n)xSU(n)/SU(n)

● SU(n)/SO(n)
SU(3)/SO(3) : V ∼ λ2,5,7 , A ∼ λ1,3,4,6,8

V a
∼ ta , Aa

∼ taγ5

● SU(2n)/Sp(2n)

Non-example:
● SU(3)/SU(2) V ∼ λ1,2,3 , A ∼ λ4,5,6,7,8



At first sight, it appears that the effective action for 
NGB’s conserves the internal parity

Γ ∼

∫
d
4
x |DµU |2 + c1|DµU |4 + c2DµUDνU

†
DµUDνU

†
+ . . .

This would forbid interactions involving odd 
numbers of NGB’s, e.g. π0→γγ

This action also has no anomalous gauge variation, 
so can’t be a faithful description of low-energy 
QCD - too much symmetry, not enough anomaly 

In fact, whenever a parity can be defined, can 
construct a term in the action that breaks it..



Universal form of WZW

Γ′(U) = number × “area bounded by the image of spacetime on SU(N)”

First, recall SU(n)xSU(n)/SU(n): 
Just like before, but harder to visualize

field manifold (SU(n))

M5

Γ′(U) = −

iNc

240π2

∫
M5

Tr(α5)

● construction allowed by π4(SU(n))=0, π5(SU(n))=Z

● quantization condition necessary for consistency

α = (dU) U
†



Suppose the NGB’s can be collected into a unitary 
matrix such that:  

U → e
iεLUe

−iεR

It follows automatically that we can write a closed, 
globally invariant, five-form:

Tr(α5) , α = (dU) U†

(e.g., for SU(n)xSU(n)/SU(n) = SU(n) )

This was the mathematical ingredient in the 
“fermions without fermions” theorem



For a general symmetry breaking pattern, the full 
symmetry group can be defined to act on NGB’s as: 

e
iπ

→ e
iε
e
iπ

e
−iε′(ε,π)

e
2iπ

′

= e
iπ

′

R(e−iπ
′

) = e
iε

e
2iπ

e
−iR(ε)

Let R denote the parity: π is odd, ε’ is even

element of unbroken groupgeneral group element

Thus U=exp(2iπ) has the correct properties to 
build a topological action

[Coleman et.al. 1969]



Another way to proceed

Work directly from the nonlinear realization: 

e
iπ

→ e
iε
e
iπ

e
−iε′(ε,π)

View this as a restriction of the more general case 
with a full SU(n) multiplet of NGBs in π, and 
unconstrained variations εL and εR:  

e
iπ

→ e
iεL

e
iπ

e
−iεR

This has too many NGBs, and too many symmetry 
generators

Eat and Decouple:
eat the extra pions with strongly coupled gauge field for ε′



Γ ∼

∫
d
4
x

{
−(Fµν

L )2 − (Fµν
R )2 + |DµU |2

}

DµU = ∂µU − igLAµ
LU + iUgRAµ

R

Take gR→∞, yielding e.o.m. for AR as a function of 
AL, U

To see how this works in a specific example, return 
to SU(3)/SU(2):

A
µ
R =

〈
U

†(Aµ
L + i∂

µ)U
〉

SU(2)

● What do we get when we substitute this solution 
for AR into the SU(3)xSU(3)/SU(3) WZW term ?  
● Is it the same as the direct construction from 
SU(3)/SU(2)?



First, they have the same anomaly:

δΓ = −

N

24π2

∫
M4

Tr

{
εL

[
(dAL)2 −

i

2
d(A3

L)

]}
− Tr

{
εR

[
(dAR)2 −

i

2
d(A3

R)

]}
︸ ︷︷ ︸

0

Can compare order by order in pions: the same

note: appears that (even or odd) integer is possible - 
odd ruled out by global SU(2) anomaly

note: more gauge invariant operators appear in the 
direct construction (Φ) than from the nonlinear 
realization (U) - from a U can get a Φ, but not vice-
versa



Equivalent spinor field theories

To establish “equivalence” between different fermion 
field theories, a necessary condition is that, if chiral 
symmetry breaking happens, the resulting chiral 
Lagrangians agree

● If two chiral Lagrangians generate the same 
anomaly, are they the same (up to gauge-invariant 
operators) ? 

● Or, given a (consistent) anomaly, can we recreate 
the action (up to gauge invariant operators) ?



Integrating a consistent 
anomaly

Simpler case: consider a U(1) field φ=exp(iπ), 
coupled to a photon.  Evaluate the action at φ=1:

Γ =

∫
d4x (∂φ∗ + iAφ∗)(∂φ − iAφ) →

∫
d4x A2 = Γ

∣∣
π=0

Now take a local variation of the new action:  

δΓ′ =

∫
d
4
x2∂ε A =

∫
d
4
x ε (−2∂A) ≡

∫
d
4
xεA(A)

“consistent” anomaly

Given this “consistent” anomaly, can we build a 
boson theory that generates it? 

δA = ∂ε



“integrate” the anomaly:

Γ′ =

∫ 1

0
dt

∫
d
4
x π(x)A(e−itπ(A + i∂)eitπ︸ ︷︷ ︸

A−t∂π

)

︸ ︷︷ ︸
−2∂(A−t∂π)

=

∫
d
4
x − 2π∂A + π∂

2
π

Γ = Γ
∣
∣
π=0

+ Γ′ = |(∂ − iA)eiπ|2

Γ
∣∣
π=0

=

∫
d
4
xA

2

Add the “boundary” condition:

Recover the original action: 



Apply to chiral Lagrangians 
In general, if we have a consistent anomaly: 

δΓ =

∫
d
4
x ε

a(x)Aa(A)

which vanishes for “a” in a subgroup H, then we can 
integrate to obtain an action for SU(n)/H:

Γ =

∫ 1

0

dt

∫
d
4
x π

a(x)Aa
(
e
−itπ(A + i∂)eitπ

)

● If two chiral Lagrangians generate the same 
anomaly, then they are the same (up to gauge-
invariant operators)

● Interesting equivalences between WZ actions 
obtained from different underlying fermion theories

[e.g. Zumino et.al. 1996]



Ingredients of a little higgs 
model

(1) Find a mechanism for a light “Higgs” field to leak 
down below a “supercolor” scale (~10 TeV)

(2) Generate a Higgs potential, and coupling to 
fermions, without upsetting (1)

● concentrate on (1)

● understand (1) ⇒ shed some light on (2)



Radiative mass corrections

positive

● “little higgs”: to keep modes massless, gauged generators 
must have both unbroken and broken components

m2
ab = M2

∑
Λ

Tr

{
[ΛV , [ΛV , taA]]tbA︸ ︷︷ ︸−[ΛA, [ΛA, taA]]tbA

}

positive and nonzero 
if NBG charged 

● “composite higgs”: EW-symmetric vacuum can be 
destabilized by gauging broken generators strongly enough

[e.g. Peskin 1980]

consider a collection of gauged generators:
Λ = ΛV + ΛA

unbroken broken

one-loop contribution to scalar masses:



Anomaly physics of little Higgs 
bosons

Why it’s not easy to see the anomaly interactions: 

Recall the case of QCD - what are the anomaly 
interactions involving kaons ? 

● Single K interactions ruled out (isospin) 

● K†K interactions ruled out (parity) 

Interactions must involve either other NGB’s (π,η) or 
gauge fields for broken generators



Example: two copies of SU(3)/SU(2): Kaplan-Schmaltz

Topological interactions involving H:

● Gauge both copies with the same SU(3) gauge field

● One copy of (H,η) eaten, one copy survives

Φ = exp


i




η ·

· η
H

H†
−2η










·

·

1




A =

(
W C

C† 0

)

N

16π2

∫ [
(DH

†)(dW − iW
2)C − C

†(dW − iW
2)DH

]

e
+
e
−
→ Z

∗
→ HC

[Kaplan and Schmaltz 2003]



Example: SU(5)/SO(5)

● Collect NGBs into  Σ=exp(2iπ)

π =




χT + 1

2
η H∗ φ†

HT
−2η H†

φ H χ + 1

2
η




● Gauge electroweak, and eaters of χ,η
A =




−WT
−

1

2
B + W ′T + 1

2
B′

· ·

· −2B′
·

· · W + 1

2
B + W ′ + 1

2
B′




● H, χ,η massless through one loop, φ not

Topological interactions most dramatic for anomaly-
dominated decays - e.g. decay of “lightest T-odd” 
particle into standard model particles

[Arkani-Hamed et.al. 2002]



Recall in QCD, there is only one parity: 

L = ψ̄(i∂/ + A/ V + A/ Aγ5)ψ

ψ → γ0ψ

AV → +AV

AA → −AA

!x → −!x

● leading term in chiral Lagrangian respects two 
parities: π→-π, x→-x

● WZW term breaks both parities, preserving only 
the combination 

Implication for little higgs models:

● can’t use NGB parity ( “T parity” ) to argue stability 
of lightest odd particle (unless p=0) 

and

Aside on parity:



Recall that to implement the “little higgs” one-loop 
mass cancellation, need to gauge broken generators, 
which introduce anomalies

● cancel with decoupled sectors ( e.g. Kaplan Schmaltz )

Φ1

A
a

µ

● cancel with spectators ( e.g. SU(5)/SO(5) )

A
a

µ

Σ “spectators/leptons”

Φ2



What to do with spectators ?
An amusing QCD example

● suppose we knew the basic structure of the lepton 
sector, but not it’s coupling to hypercharge
● suppose we knew the weak couplings of mesons, 
but not the number of colors

Program: 
● measure Nc via anomaly (π0→γγ)
● deduce the hypercharge couplings of “spectator” 
leptons:

T 3 Y

νL
1

2
−

1

6
Nc

eL −

1

2
−

1

6
Nc

νR 0 −

1

6
Nc + 1

2

eR 0 −

1

6
Nc −

1

2



Historical perspective
Technicolor/ composite higgs
● electroweak symmetry broken by fermion 
condensation

Even if fermions aren’t mentioned by name, the anomaly physics 
is still present

?
Extra dimension, deconstruction
● UV completion involves deconstructed extra 
dimension

Little higgs
● work directly from symmetries, leave UV 
completion unspecified



Summary
Theory 

● Simple (simplest?) WZ term: SU(3)/SU(2) 

● Equivalent approaches to topological action give 
insight on equivalences of different fermion theories

Phenomenology 

● A benchmark scenario for a nonstandard Higgs

● “Little Higgs” versus “Composite Higgs” emphasizes 
symmetries, but anomaly physics enters regardless and 
can’t be neglected
● Understanding topological interactions is necessary 
to answer the question:  “ what is the higgs particle ? ” 


